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Edge waves on a gently sloping beach
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Edge waves of frequency w and longshore wavenumber k in water of depth A(y) =
h,H{oy/h,),0 <y < o, are calculated through an asymptotic expansion in o/kh,
on the assumptions that o € 1 and kh, = O(1). Approximations to the free-surface
displacement in an inner domain that includes the singular point at A = 0 and the
turning point near gh =~ ®*/k* and to the eigenvalue A = w?/ogh are obtained for the
complete set of modes on the assumption that A(y) is analytic. A uniformly valid
approximation for the free-surface displacement and a variational approximation to
A are obtained for the dominant mode. The results are compared with the shallow-
water approximations of Ball (1967) for a slope that decays exponentially from o to
0 as h increases from 0 to A, and of Minzoni (1976) for a uniform slope that joins
h =0 to a flat bottom at A = h; and with the geometrical-optics approximation of
Shen, Meyer & Keller (1968).

1. Introduction
The classical edge wave is that of Stokes (1846) on a uniformly sloping beach,

z = — gy, for which the free-surface displacement and dispersion relation are given
b

Y {x,y,t) = ae ¥ cos (kx—wt) (kla| <€ 1), (1.1)
and w® = Aogk, (1.2)
with A=v=(140Y)t=cosf (B=tan'0). (1.3)

This Stokes edge wave is the dominant member of a discrete set for which Ao =
sin(2e+1)4 and n=0,1,... up to the largest integer for which (2n+1)f8 <in
(Ursell 1952).

I consider here the generalization of these results for uniform slope to a gently
sloping beach, z = —h(y), on the assumptions that h(y) is smooth (at least to the
extent that the derivatives that occur explicitly in the subsequent development
exist) and has the limits

hloy (yi0), h~h (yt o), (1.4a,b)
where 0<o <kh =xk=0(Q1). (1.5a, b)
It is expedient to specify A(y) in the form
h=hH(), %=o0cy/h, (1.6a,b)
(sothat H| 7 as 70 and H ~ 1 as 1 o) and to introduce
k‘; . T«1 (1.7)

as the ratio of the wave scale 1/k to the beach scale h,/a.
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I begin my analysis in §2 by invoking an earlier (Miles 1985) formulation for waves
in water of variable depth and posing the free-surface displacement in the form
(ef. (1.1))

€ = aZ(y) cos (kx — wt), (L.8)
(or, with trivial changes, { = aZ(y) cos kx coswt) to obtain the differential equation
for Z(y). This equation has singularities at y = 0 (A = 0) and y = oo and a turning
point that, for A = O(1), is near gh = w?/k?, in consequence of which the limit ¢} 0
leads to a singular perturbation problem for which the inner and outer lengthscales
are 1/k and &, /0.

In §3, I develop an inner expansion for which the independent variable is kh/o.
The first approximation to w is provided by the solution for a uniform slope, while
the second approximation is given by

' dh 2 ey N _

e (2n4+1) (dy)0+(n +n+3)k (dy2)0+0(0' Jo 40,5 = O(1)]. (1.9)
The corresponding expansion of Z(y) is not uniformly valid as y 1 00, but it suffices
for many applications, particularly for the higher modes.

The turning point is relatively unimportant for the dominant mode, which is non-
oscillatory and has no zeros in 0 € y < oo. It then proves possible to obtain a single,
uniformly valid expansion of Z(y) (§4) and a rather efficient variational approxi-
mation for the dominant eigenvalue (§5). These results should be useful in various
oceanographic contexts, in which only the dominant mode is likely to be significant.

Finally, in §6, I compare the results of §§4 and 5 with the shallow-water (x < 1)
approximations of Ball (1967) for an exponentially decaying slope and of Minzoni
(1976) for a discontinuous (from o to 0 at y = A,/o) slope.

The problem of edge waves on a gently sloping beach also has been attacked by
Shen, Meyer & Keller (1968) using Keller’s (1958} geometrical-optics approximation
for gravity waves in water of gradually developing depth. This approximation (like
WKB approximations in general) is not expected to be accurate for the dominant
mode ; moreover, Shen et al. ignore the singularity at 2 = 01, which might be thought
to affect their result for all modes. I consider their approximation in the Appendix
and find that it reproduces the first term in (1.9) exactly and yields n®+ 2+ in place
of n?+n+1 in the second term. It fails at O(e?), at least for Ball’s (1967) profile, but
this appears to reflect the intrinsic order of Keller’s approximation rather than the
neglect of the singularity at 4 = 0.

2. Formulation

The linearized problem for monochromatic surface waves on water of variable
depth k admits a solution for the velocity potential in the form (Miles 1985)

¢ = Re{e™ (cosh £z + K£ ' sinh £2) &(x, y)}, (2.1)
where A2=—-0;—0 K=uw"/g, (2.2)
v-[{s‘ng’{hl{(l—";fh ’{h)} V<D]+K¢ =0, (2.3)

T Keller (1958) explicitly recognizes, and subsequently (1961) accommodates, this singularity in
his treatment of the continuous spectrum. See also Shen & Keller (1975).
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and # operates only on @ (and not on ). Posing the free-surface displacement in the
form (1.8) and invoking the free-surface boundary condition ¢, = —g¢, we have

D(z,y) = (ga/iv)e** Z(y), £*= k*—0°. (24a,b)

Substituting (2.4a) into (2.3) and re-arranging, we obtain

(K cosh £h— £ sinh £h) Z + b/ (cosh £h— K £ 'sinh £h) Z' = 0, ' (2.5)
wherein £ operates only on Z, and * = d/dy.
The edge-wave boundary conditions are
Z=1 (y=0), Z-0 (ytw), (2.6a, b)
which can be satisfied for (and only for) a discrete set of
A =w?/ogk. (2.7)

There also is a continuous spectrum, for which (2.65) is replaced by the specification
of an incoming wave and for which an analysis similar to that of §4 below yields an
approximation equivalent to that of Keller (1958, 1961).

3. Inner expansion

An appropriately scaled inner variable for the domain between the singularity at
h = 0 and the neighbourhood of the turning point at kh = w?/gk is

§=o"khly) = e H(y). 3.1)
Transforming (2.45) and (2.5) and expanding in powers of o, we obtain
D"+ H' D+ A~ o[NP — 1)+ H'EHD* - 1) D
+AD*+2H'ED - )]+ 00"} Z =0, (3.2)
where D =H0t H =1+4eHjE+3e*H, —HP)E+..., (3.3a, b)
and H{® = d"H/dy" at 5 = 0. Substituting (3.3) and the expansions
A=Aj+ed+..., Z=Z\(E)+eZ,(E+..., (3.4a,b)
into (3.2) and equating powers of ¢, we obtain
(EZy) + (A —8) 2, = ¥Z,=0, (3.5a)
Ll =—ANZy+H[25A,— &) Z,—EZ,), ... (3.5b)
Identifying (3.5a) as Laguerre’s equation, we obtain
d\*

Ap=2n+1, Z,=e*L (2g)_—£(d—§) e (n=0,1,2,..). (3.6a,b)

A, then may be determined from the requirement that the right-hand side of (3.55)
be orthogonal to Z,. Multiplying (3.5b) throughout by Z,, invoking the identity

Z, L7, = [EZXNZ,|Z,) (3.7)



128 J. Miles

integrating over (0, o), and invoking the null condition at £ = c0, we obtain

v | eea-oz-ez e

M 0
Hs f ziat

0

(3.8)

Integrating £22 and £2Z% with the aid of Buchholz’s (1953) §12(21) and integrating
£Z,Z, by parts, we reduce (3.8) to

A, = (nE+n+3) HY. (3.9)

Combining this last result with A, = 2»+ 1 and invoking (1.6) and (2.7), we obtain
(1.9).

4. Uniformly valid expansion for dominant mode

The approximation (3.4) is O(e™"¢) as y1 oo but does not exhibit the correct
exponential decay. This difficulty may be overcome by matching the inner expansion
to an appropriate outer expansion ; however, this is of limited interest for the higher
modes and unnecessary for the dominant mode, for which a uniformly valid
approximation may be obtained in the form

2() = expi—vky-+ | Fonyan, (1)
where 7 is defined by (1.6), and v is determined by
v=(1—p%i, ptanh(kp)=K/k= Ao, (4.2a, b)
which implies the satisfaction of (2.4) for & = h,. Positing the expansions
A=Ayj+eA +..., F=F+eFi+..., (4.3a,b)
expanding (4.2b) about g = 0 to obtain
pr=1—vt=ecA+icA%+ .., (4.4)
subs@ituting into the corresponding expansion of (2.5), and equating powers of ¢, we
obtain 2HF, = A,(1—H)—H', (4.5a)
and

2HF, = A,(1—H)+3iH'+ H+H') Fy+ H(F+ F})
+kAH(1 —1H) (H' =14 1H)+ H*(\ —H' —3H) F,—H*Fy+ F%)], ... (4.5b)

Requiring ¥, and F, to be bounded at 7 = 0, which determines A, and A, respectively,
we obtain

A=1, F=—F—" (4.6a, b)

. I*H/ 2_ 172 H/r _ I 4
n =g, = S B e ). e

We remark that F, and F, are finite at # = 0 and vanish as 1 co(H ~ 1), by virtue of
which the expansion (4.3b) is uniformly valid.
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S. Variational approximation (dominant mode)
The variational form (Miles 1985)
(VD*. (£ 1 sinh £L VD))
KP*D) +{VP*-[£*(cosh£h—1) VD]’
where { ) signifies an average over the free surface, is stationary with respect to joint

variations of @ and @* about the respective solutions of (2.3) and its adjoint.
Substituting the trial functions

K=

(5.1)

@ = P eltr kY, P = P o ikT Y, (5.2, b)

where v is determined by (4.2), into (5.1), invoking (1.6), integrating by parts, and
dividing the result by ok, we obtain

(1 +p?) f e 29 cosh [kuH (7)1 H' () dy
0 . (5.3)
L+ xp™H(1+v?) f e 27 sinh [kpH ()] H' (7) dy

0

A =

The integrals in (5.3) may be expanded in powers of ¢ through repeated integration
by parts (as in the asymptotic expansion of Laplace transforms). Carrying this
expansion through O(¢?) and invoking (4.4), we obtain

A=1+3eH +3*G+Ho+Hy —2c%) + O(6®). (5.4a)
and v=1-3e—1Gt+H;+ &%)+ O0(6). (5.4b)

The errors in the trial functions (5.2a, b) are O(¢), which implies that the errors in
(56.3) and (5.4) are at most O(€®) (O(€®) in (5.4) refers to the terms neglected in the
expansion of (5.3)) by virtue of the variational principle. This prediction is confirmed
by a comparison of the first two terms in the expansion (5.4) with (4.6a) and
(4.7a).

Letting « | 0 in (4.2) and (5.3) and integrating by parts, we obtain the shallow-
water approximations

2 0
A= (1 ;—VV )[1 +J e‘z("/e)”H”(n)d')]], v = (1—€)i, (5.5a, b)

0

wherein error factors of 1+ O(«k?) are implicit.

6. Examples
The simplest smooth profile that satisfies (1.4) is

h = hy(1—e VM), (6.1)
for which (1.6), (4.4), (4.6b), (4.7b) and (5.4) yield
H=1—-e" F,=0, F, =Liie"+e?), (6.2a—¢)
A=1-3e+3F—3H)+0(), v=1—3c+€e* (- +0(e®). (6.3a,b)
Shallow-water theory yields (Ball 1967)
A=v=[(1+3—1][1+O0(?)], (6.4)
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in agreement with (6.3) within the indicated error factors. The shallow-water
approximations (5.5, b) yield (6.4) without further approximation.
An example for which A(y) is not smooth is provided by

7Y
h_hl

The counterparts of (6.2) and (6.3) are

(cy S hy). (6.5)

H=717, F,= 2% F= 38

where & is Dirac’s delta function,
A=1+eE—i)+0(®), v=1—le—e?(}+*+0(). (6.7a, b)
Shallow-water theory yields (Minzoni 1976)
A=1—e40(e %), p=(L—eA), (6.8a, b)

within implicit error factors of 1+0(x?). It follows that (6.7a) is in error at O(e?),
presumably in consequence of the discontinuity in slope.

Appendix. Comparison with Shen, Meyer & Keller

Shen et al’s (1968) equatlons (7) and (8) transform to [e— o = ke, n,—n,

nom/bL >k, H(X)— h H(y), k@)~ (kL/A) x(n), 2~ (hy/oL) 7]
fa[xz('r])—l]%d?]=(n+%)1te (n=0,1,2,...), (A1)
x(q)tanh [xx(n) H(y)] = Ao, tanh[cH(a)] = Ac. (A 2a, b)

Expanding (A 1) and (A 2) in powers of o, we obtain
x* = eAH '+Y{0oA)*+0(c’H), H(a) = eA[1+icA)2*+0(c*)], (A3a,b)
and Ja [Ml]idn = (n+3) me[1+HoA)2+0(a?)]. (A 4)
0 H(n)

(We note that (A 4) reduces to the conventional WKB approximation in the shallow-
water limit, in which the O(a®) terms are neglected in (A 3) and (A 4).) Letting H be
the variable of integration and inverting H’, we obtain

A=2n+1+32n+1)2eHy+ (2n+ 1) [F5(Hy —H?) — 2]+ O(€®). (A 5)

Comparing the O(1) and O(¢) on the right-hand side of (A 5) with (3.6¢) and (3.8), we
find that the former is exact, whereas the second is inferior to the exact value by the
factor (2n+ 1)2/[(2n+1)2+1].

Substituting (6.2a) into (A 4) and neglectlng O(c?), we obtain

A=2n+1—m2+n+3})e+0(c?), (A 6)

which compares with Ball’s (1967) result (which implicitly neglects O(c?))
A= 2n+1)(1+1ei— (2 +n+l)e (A Ta)
=2n+1—mi+n+e+i2n+1)et+O(?). (A7b)
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1t follows that (A 5) fails at O(e?), but this appears to reflect the intrinsic order of

Keller’s geometrical-optics approximation rather than the neglect of the singularity
at h=0.
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