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Edge waves on a gently sloping beach 

By JOHN MILES 
Institute of Geophysics and Planetary Physics, University of California, 
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Edge waves of frequency w and longshore wavenumber k in water of depth h(y )  = 
h,H(uy/h,) ,O < y < a, are calculated through an asymptotic expansion in rr/kh, 
on the assumptions that a < 1 and kh, = O(1). Approximations to the free-surface 
displacement in an inner domain that includes the singular point a t  h = 0 and the 
turning point near gh z w 2 / k 2  and to the eigenvalue h = w2/ugh are obtained for the 
complete set of modes on the assumption that h ( y )  is analytic. A uniformly valid 
approximation for the free-surface displacement and a variational approximation to 
A are obtained for the dominant mode. The results are compared with the shallow- 
water approximations of Ball (1967) for a slope that decays exponentially from (T to 
0 as h increases from 0 to h, and of Minzoni (1976) for a uniform slope that joins 
h = 0 to a flat bottom a t  h = h, and with the geometrical-optics approximation of 
Shen, Meyer & Keller (1968). 

1. Introduction 
The classical edge wave is that of Stokes (1846) on a uniformly sloping beach, 

z = --ay, for which the free-surface displacement and dispersion relation are given 
by 

and 

with A = v = (1+a2)-t = cosp ( p  = tan-la). (1.3) 
This Stokes edge wave is the dominant member of a discrete set for which Aa = 
sin (2n+ 1) ,4 and n = 0,1, . . . up to the largest integer for which (2n+ 1)  ,8 < in 
(Ursell 1952). 

I consider here the generalization of these results for uniform slope to a gently 
sloping beach, x = - h ( y ) ,  on the assumptions that h ( y )  is smooth (at least to the 
extent that the derivatives that occur explicitly in the subsequent development 
exist) and has the limits 

h 4 W  ( Y i O ) ?  h N h l  ( Y l ' c O ) ,  (1.4a, b )  

(1.5a, b)  where 

It is expedient to specify h ( y )  in the form 

0 < cr < kh, G K = O(1). 

h = hIWV) ,  7 = flY/h,, (1.6a, b )  

( s o t h a t H j y a s q J O a n d H - 1  asqtoo)andtointroduce 

as the ratio of the wave scale ilk to the beach scale h,/cr. 
6-2 
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I begin my analysis in $2 by invoking an earlier (Miles 1985) formulation for waves 
in water of variable depth and posing the free-surface displacement in the form 
(cf. (1.1)) 

(or, with trivial changes, 5 = aZ(y) cos kxcosot) to  obtain the differential equation 
for Z(y). This equation has singularities a t  y = 0 (h  = 0) and y = co and a turning 
point that, for A = O(l ) ,  is near gh = 0 2 / k 2 ,  in consequence of which the limit €4 0 
leads to a singular perturbation problem for which the inner and outer lengthscales 
are l / k  and ~ , / c T .  

In  $3,  I develop an inner expansion for which the independent variable is khla. 
The first approximation to w is provided by the solution for a uniform slope, while 
the second approximation is given by 

The corresponding expansion of Z(y) is not uniformly valid as y t 00, but i t  suffices 
for many applications, particularly for the higher modes. 

The turning point is relatively unimportant for the dominant mode, which is non- 
oscillatory and has no zeros in 0 < y < co. It then proves possible to obtain a single, 
uniformly valid expansion of Z(y) ($4) and a rather efficient variational approxi- 
mation for the dominant eigenvalue ($5). These results should be useful in various 
oceanographic contexts, in which only the dominant mode is likely to be significant. 

Finally, in $6, I compare the results of §$4 and 5 with the shallow-water ( K  % 1) 
approximations of Ball (1967) for an exponentially decaying slope and of Minzoni 
(1976) for a discontinuous (from CT to 0 a t  y = h J g )  slope. 

The problem of edge waves on a gently sloping beach also has been attacked by 
Shen, Meyer & Keller (1968) using Keller's (1 958) geometrical-optics approximation 
for gravity waves in water of gradually developing depth. This approximation (like 
WKB approximations in general) is not expected to be accurate for the dominant 
mode ; moreover, Shen et at. ignore the singularity at h = Of, which might be thought 
to affect their result for all modes. I consider their approximation in the Appendix 
and find that i t  reproduces the first term in (1.9) exactly and yields n2 + n + in place 
of n2+n+g in the second term. It fails a t  O(s2), a t  least for Ball's (1967) profile, but  
this appears to reflect the intrinsic order of Keller's approximation rather than the 
neglect of the singularity at h = 0. 

2. Formulation 

depth h admits a solution for the velocity potential in the form (Miles 1985) 
The linearized problem for monochromatic surface waves on water of variable 

q5 = Re (epiwt (cosh Rz + K R 1  sinh Rz)  @(x, y)}, (2.1) 

where ,p = - a 2  z - 3 2  u >  K = 02/g, (2.2) 

V.[{?+K( 1 -cash Rh )}V@]+,@ = 0, 
(2.3) 

t Keller ( 1958) explicitly recognizes, and subsequently (1961) accommodates, this singularity in 
his treatment of the continuous spectrum. See also Shen & Keller (1975). 



Edge waves on a gently sloping beach 127 

and R operates only on @ (and not on h ) .  Posing the free-surface displacement in the 
form (1.8) and invoking the free-surface boundary condition c$~ = -g<, we have 

@(z, y )  = (ga/iw) eik5Z(y), R2 = k2-a;. (2.4a, b )  

Substituting ( 2 . 4 ~ )  into (2 .3)  and re-arranging, we obtain 

(KcoshRh-AsinhRh)Z+h'(coshAh-KR-'sinhRh)Z' = 0, (2 .5)  

wherein R operates only on 2, and ' = d/dy. 
The edge-wave boundary conditions are 

2 = 1 ( y = O ) ,  z+o (ytco), 

which can be satisfied for (and only for) a discrete set of 

(2.6a, b )  

h = w2/crgk. (2 .7)  

There also is a continuous spectrum, for which (2.6b) is replaced by the specification 
of an incoming wave and for which an analysis similar to that of $ 4  below yields an 
approximation equivalent to  that of Keller (1958, 1961). 

3. Inner expansion 

h = 0 and the neighbourhood of the turning point a t  kh = w2/gk is 
An appropriately scaled inner variable for the domain between the singularity at 

6 = g-'kh(y) = e- 'H(y) .  (3 .1)  

Transforming (2.4b) and (2.5) and expanding in powers of g, we obtain 

{ E 9 2 + H ' 9 + + - [ - ~ a 2 [ 9 E 3 ( 9 * -  1)2+H1c2(92- I)  9 

+ A ( E Z ~ ~  + 2 ~ ~ ~ 9  - ~ 3 3  + o(g4)) 2 = 0, (3.2) 

where 9 H'aE, H = ~ + E H ; ; ~ + ~ E ' ( H ~ - H ; ; ~ ) E ~ + . . . ,  (3 .3a,  b)  

and HP' = d"H/dy" at y = 0. Substituting (3 .3)  and the expansions 

h = h,+EA,+ ...) 2 = Z,(~)+EZ,(E)+ ..., (3 .4a,  6 )  

into (3.2) and equating powers of 6 ,  we obtain 

( ~ z ; ) ' + ( h , - f [ ) Z ,  = L82, = 0, 

92' = - A ,  2, +Hi[2E(h0 - 5) 2, - @;], . . . 
( 3 . 5 ~ )  

(3.5b) 

Identifying ( 3 . 5 ~ )  as Laguerre's equation, we obtain 

A, = 2 n + l ,  2, = e-5Ln(26) = - - (ne-2c (n = 0,1,2, ...). (3 .6a,  b )  

A, then may be determined from the requirement that  the right-hand side of (3.5b) 
be orthogonal to 2,. Multiplying (3.5 b )  throughout by Z,, invoking the identity 

n! eYdr d( 

2, 921 = ~ ~ ~ ~ ( ~ J ~ O ) ' I ' >  (3.7) 
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integrating over (0, GO), and invoking the null condition a t  

J: [26(~,-0Z:-6zOZ;ld6 
A1 - 
H i  
- _  

6 = CO, we obtain 

(3 .8)  

Integrating 62,” and PZ: with the aid of Buchholz’s (1953) 3 12 (21 )  and integrating 
&Z,Zk by parts, we reduce (3.8) to 

A, = ( n 2 + n + a ) H g .  (3 .9 )  

Combining this last result with A, = 2n+ 1 and invoking (1.6) and ( 2 . 7 ) ,  we obtain 
(1 3). 

4. Uniformly valid expansion for dominant mode 
The approximation (3 .4 )  is O(e-l’€) as y ?  GO but does not exhibit the correct 

exponential decay. This difficulty may be overcome by matching the inner expansion 
to an appropriate outer expansion ; however, this is of limited interest for the higher 
modes and, unnecessary for the dominant mode, for which a uniformly valid 
approximation may be obtained in the form 

Z(Y) = exPi-vkY+rF(‘l)dll ,  0 

where 7;1 is defined by (1.6), and v is determined by 

v = (1 -y2) i ,  y tanh (KP)  = K / k  = ACT, (4 .2a ,  6 )  

which implies the satisfaction of (2 .4 )  for h = h,. Positing the expansions 

h = A,+d,+ ..., F = Fo++Fl+ ..., (4.313, b )  

expanding (4 .2b )  about y = 0 to obtain 

/!2= l -vZ=€A+fCT2A2+. . . ,  (4 .4)  

substituting into the corresponding expansion of (2 .5 ) ,  and equating powers of E ,  we 
obtain 

2HF0 = h , ( l - H ) - H ’ ,  (4 .54  
and 

2HF, = A,( 1 - H )  +I&’ + (H + H’)  F, + H ( F ;  +Pi) 

+ K * [ H (  1 -’@) ( H ’ - $ + i H )  + H 2 ( 1  -H’-z&) Fo-iH3(F; +P,”)], . . . (4.5 b )  

Requiring F, and Fl to be bounded at 7;1 = 0, which determines A, and A,, respectively, 
we obtain 

l - H ’ - H  
2H ’ 

A, = 1,  F, = (4.6a, b )  

We remark that F, and Fl are finite a t  7;1 = 0 and vanish as 7;1 t co ( H  
which the expansion (4 .3b)  is uniformly valid. 

l), by virtue of 
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5. Variational approximation (dominant mode) 
The variational form (Miles 1985) 

(V@*- (k-l sinh AhV@)) 
K =  (@*@)+(VQ,*.[k-2(co~hRh- l)V@])’ (5.1) 

where ( ) signifies an average over the free surface, is stationary with respect to joint 
variations of @ and @* about the respective solutions of (2.3) and its adjoint. 
Substituting the trial functions 

> 0 , (5.2a, b) Q, = @ eikx-uky 
0 

@* = ~,*~-ikx-uky 

where v is determined by (4.2), into (5.1), invoking (1.6), integrating by parts, and 
dividing the result by crk, we obtain 

s-l( 1 + v 2 )  lorn e-‘(”/‘)T cosh [ ~ p I l ( 7 ) ] H ’ ( 7 )  d7 

A =  (5.3) 
sinh [KLLH(V)I H ’ ( 7 )  drl 

The integrals in (5.3) may be expanded in powers of B through repeated integration 
by parts (as in the asymptotic expansion of Laplace transforms). Carrying this 
expansion through O(e2) and invoking (4.4), we obtain 

A = 1 + ;€H; + y(; + a; + H ;  - 2 2 )  + 0 ( € 3 ) .  ( 5 . 4 ~ )  

and v =  1-1c-12 8 ( Z + ~ ; + K 2 ) + 0 ( E 3 ) .  1 (5.4b) 

The errors in the trial functions (5.2a, b) are O(s) ,  which implies that the errors in 
(5.3) and (5.4) are a t  most O ( 2 )  ( O ( E ~ )  in (5.4) refers to the terms neglected in the 
expansion of (5.3)) by virtue of the variational principle. This prediction is confirmed 
by a comparison of the first two terms in the expansion (5.4) with ( 4 . 6 ~ )  and 
( 4 . 7 ~ ) .  

Letting ~ $ 0  in (4.2) and (5.3) and integrating by parts, we obtain the shallow- 
water approximations 

wherein error factors of 1 + O ( K ~ )  are implicit. 

6. Examples 
The simplest smooth profile that satisfies (1.4) is 

h = hl(l-e-uY/hl), (6.1) 

for which (1.6), (4.4), (4.6b), (4.7b) and (5.4) yield 

H = I-e-7, Fo = 0, Fl = +K2(e-T+ep2V), (6.2a-c) 

A = ~ - & + B ~ ( Q - & ? ) + O ( E ~ ) ,  v = l - & + t 2 ( $ - $ ~ 2 ) + O ( ~ 3 ) .  (6.3a, b )  

Shallow-water theory yields (Ball 1967) 

h = V =  [(1+&2)t-&][1+0(K2)], (6.4) 
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in agreement with (6.3) within the indicated error factors. The shallow-water 
approximations ( 5 . 5 ~ 4  b )  yield (6.4) without further approximation. 

An example for which h ( y )  is not smooth is provided by 

h = (ay 5 hl).  
hl 

The counterparts of (6.2) and (6.3) are 

'I 
1 '  

H =  
1 - _  

0 '  
Fo = ' (6.6a-c) 

where S is Dirac's delta function, 

A = 1 + 2 ( ~ - - ~ 2 ) + 0 ( ~ 3 ) ,  = I - + -  2 ( 8 + i K 2 ) + 0 ( E 3 ) .  1 (6.7a, b )  

Shallow-water theory yields (Minzoni 1976) 

A = 1 ---2/e+o(e-4/7, = ( 1  -€A):,  (6.8a, 6) 

within implicit error factors of 1 + 0 ( ~ ~ ) .  It follows that (6.7a) is in error at O(e2) ,  
presumably in consequence of the discontinuity in slope. 

Appendix. Comparison with Shen, Meyer & Keller 
Shen et aZ.'s (1968) equations (7) and (8) transform to [€+a = KE,  n,+n, 

n,n/bL+ k, H ( X )  + h,H('I),  k(x) + ( W h ) t X ( ' I ) ,  x+ (hl/UL) 'I1 

J o  

~ ( 7 )  tanh [ K X ( ~ ) H ( ' I ] ) ]  = ha, tanh [ ~ H ( a ) l  = ha. (A 2a, 6) 

Expanding (A 1 )  and (A 2) in powers of IT, we obtain 

x 2  = ~ / W - ~ + i ( g h ) ~ + o ( ~ ~ H ) ,  H(a )  = ch[l+$(vh)'+O(a4)], (A 3a ,  6) 

and 

(We note that (A 4) reduces to the conventional WKB approximation in the shallow- 
water limit, in which the O(a2) terms are neglected in (A 3) and (A 4).) Letting H be 
the variable of integration and inverting H',  we obtain 

h = 2 n + 1 + a ( 2 n + 1 ) 2 € H ~ + ( 2 n + 1 ) 3 ~ 2 [ ~ ( H b , , - H ~ 2 ) - i ~ 2 ] + O ( ~ 3 ) .  (A 5 )  

Comparing the 0(1) and O(s)  on the right-hand side of (A 5) with ( 3 . 6 ~ )  and (3.8), we 
find that the former is exact, whereas the second is inferior to the exact value by the 
factor (2n+ l)'/l[(2n+ 1 ) 2 +  11. 

Substituting (6.2a) into (A 4) and neglecting O(a2), we obtain 

h = 2n+l-(n2+n++)€+O(a2),  (A 6) 

h = (2n+l ) (1+$€2)qn2+n++)E (A 7 a )  

which compares with Ball's (1967) result (which implicitly neglects O(a2))  

= 2n+ 1 - (nz+n++) E+~(2n+ 1)  s2+ o ( E 3 ) .  (A 7 b )  
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It follows that (A 5) fails a t  O(e2), but this appears to reflect the intrinsic order of 
Keller’s geometrical-optics approximation rather than the neglect of the singularity 
a t  h = 0. 
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